Herzog

[45] Date of Patent:

May 10, 1988

[54] CIRCUIT FOR MEASURING CAPACITANCE BY CHARGING AND DISCHARGING CAPACITOR UNDER TEST AND ITS SHIELD

[75] Inventor: Michael Herzog, Witterswil, Switzerland

[73] Assignee: Flowtec AG, Switzerland

[21] Appl. No.: 940,504

[22] Filed: Dec. 11, 1986

[30] Foreign Application Priority Data

Dec. 13, 1985 [DE] Fed. Rep. of Germany 3544187

[51] Int. Cl.⁴ G01R 27/26

[56] References Cited

U.S. PATENT DOCUMENTS

2,923,880	2/1960	Mayes 324/57 F	Ł
3,781,672	12/1973	Maltby et al 324/61 F	Ł
3,886,447	5/1975	Tanaka 324/60 CE)
4,187,460	2/1980	Dauge et al 324/60 CD)

FOREIGN PATENT DOCUMENTS

2744785 4/1979 Fed. Rep. of Germany . 3143114A1 7/1982 Fed. Rep. of Germany . 3413849 8/1985 Fed. Rep. of Germany . 2087084B 5/1982 United Kingdom .

OTHER PUBLICATIONS

Elektronik, 1980, No. 21, pp. 67-70. Wireless World, May 1981, pp. 31-41. Electronic Engineering, Feb. 1981, pp. 23-25.

Primary Examiner—Reinhard J. Eisenzopf Assistant Examiner—Jack B. Harvey Attorney, Agent, or Firm—Barnes & Thornburg

[7] ABSTRACT

A capacitance measuring circuit operating by the principle of switched capacitors includes a switchover device which alternately and periodically with a predetermined switchover frequency connects the measured capacitance for charging to a constant voltage and for discharging to a storage capacitor whose capacitance is large compared with the measured capacitance and whose terminal voltage is held substantially at a constant reference potential by a controlled discharge current. The magnitude of the discharge current is then proportional to the measured capacity and represents the measured value. A further switchover device applies a shield associated with the measured capacitance with the switchover frequency periodically and alternately to potentials which correspond substantially to the constant voltage and reference potential respectively. As a result, the potential of the shield is caused to follow the potential of the electrode to be shielded in accordance with the principle of "active shielding".

3 Claims, 2 Drawing Sheets

